Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Oral Sci ; 16(1): 31, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627392

RESUMEN

Accumulating evidence has demonstrated that apoptotic vesicles (apoVs) derived from mesenchymal stem cells (MSCs; MSC-apoVs) are vital for bone regeneration, and possess superior capabilities compared to MSCs and other extracellular vesicles derived from MSCs (such as exosomes). The osteoinductive effect of MSC-apoVs is attributed to their diverse contents, especially enriched proteins or microRNAs (miRNAs). To optimize their osteoinduction activity, it is necessary to determine the unique cargo profiles of MSC-apoVs. We previously established the protein landscape and identified proteins specific to MSC-apoVs. However, the features and functions of miRNAs enriched in MSC-apoVs are unclear. In this study, we compared MSCs, MSC-apoVs, and MSC-exosomes from two types of MSC. We generated a map of miRNAs specific to MSC-apoVs and identified seven miRNAs specifically enriched in MSC-apoVs compared to MSCs and MSC-exosomes, which we classified as apoV-specific miRNAs. Among these seven specific miRNAs, hsa-miR-4485-3p was the most abundant and stable. Next, we explored its function in apoV-mediated osteoinduction. Unexpectedly, hsa-miR-4485-3p enriched in MSC-apoVs inhibited osteogenesis and promoted adipogenesis by targeting the AKT pathway. Tailored apoVs with downregulated hsa-miR-4485-3p exhibited a greater effect on bone regeneration than control apoVs. Like releasing the brake, we acquired more powerful osteoinductive apoVs. In summary, we identified the miRNA cargos, including miRNAs specific to MSC-apoVs, and generated tailored apoVs with high osteoinduction activity, which is promising in apoV-based therapies for bone regeneration.


Asunto(s)
Exosomas , Vesículas Extracelulares , MicroARNs , MicroARNs/genética , Vesículas Extracelulares/metabolismo , Exosomas/genética , Exosomas/metabolismo , Regeneración Ósea , Osteogénesis
2.
Biomedicines ; 12(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38672086

RESUMEN

Osteoporosis is a common degenerative bone disease. The treatment of osteoporosis remains a clinical challenge in light of the increasing aging population. Human dental pulp stem cells (DPSCs), a type of mesenchymal stem cells (MSCs), are easy to obtain and have a high proliferation ability, playing an important role in the treatment of osteoporosis. However, MSCs undergo apoptosis within a short time when used in vivo; therefore, apoptotic vesicles (apoVs) have attracted increasing attention. Currently, the osteogenic effect of DPSC-derived apoVs is unknown; therefore, this study aimed to determine the role of DPSC-derived apoVs and their potential mechanisms in bone regeneration. We found that MSCs could take up DPSC-derived apoVs, which then promoted MSC osteogenesis in vitro. Moreover, apoVs could increase the trabecular bone count and bone mineral density in the mouse osteoporosis model and could promote bone formation in rat cranial defects in vivo. Mechanistically, apoVs promoted MSC osteogenesis by activating the extracellular regulated kinase (ERK)1/2 signaling pathway. Consequently, we propose a novel therapy comprising DPSC-derived apoVs, representing a promising approach to treat bone loss and bone defects.

3.
Small ; 19(16): e2205813, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36670083

RESUMEN

Mesenchymal stem cells (MSCs) are widely used in the treatment of diseases. After their in vivo application, MSCs undergo apoptosis and release apoptotic vesicles (apoVs). This study investigates the role of apoVs derived from human bone marrow mesenchymal stem cells (hBMMSCs) in bone metabolism and the molecular mechanism of the observed effects. The results show that apoVs can promote osteogenesis and inhibit osteoclast formation in vitro and in vivo. ApoVs may therefore attenuate the bone loss caused by primary and secondary osteoporosis and stimulate bone regeneration in areas of bone defect. The mechanisms responsible for apoV-induced bone regeneration include the release of miR1324, which inhibit expression of the target gene Sorting Nexin 14 (SNX14) and thus activate the SMAD1/5 pathway in target cells. Given that MSC-derived apoVs are easily obtained and stored, with low risks of immunological rejection and neoplastic transformation, The findings suggest a novel therapeutic strategy to treat bone loss, including via cell-free approaches to bone tissue engineering.


Asunto(s)
Células Madre Mesenquimatosas , Transducción de Señal , Humanos , Osteogénesis , Células Madre Mesenquimatosas/metabolismo , Huesos , Regeneración Ósea , Diferenciación Celular/fisiología , Nexinas de Clasificación/metabolismo
4.
Colloids Surf B Biointerfaces ; 199: 111560, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33429284

RESUMEN

Polymeric particles with non-spherical shape or coarse surface have distinct advantages for drug delivery, tissue regeneration and immunomodulation respectively, but it is not easy to control polymeric microparticles in required geometry and surface texture simultaneously. In this study, polymeric non-spherical microparticles with coarse surface were successfully prepared by double emulsion-solvent evaporation technique in the presence of ammonium bicarbonate and the formation mechanism was proposed. In addition, simvastatin was encapsulated in poly[lactic-co-(glycolic acid)] (PLGA) non-spherical microparticles with coarse surface by the same technique and the release kinetics in vitro was fitted as well, which not only enrich the encapsulation techniques of liposoluble drugs in polymeric non-spherical carriers but also envision the potential application for alveolar ridge preservation with local delivery of simvastatin.


Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Portadores de Fármacos , Emulsiones , Microesferas , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Simvastatina , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...